1. Consider two urns each containing a_i balls with number i written on it, for $i = 1, 2, 3$, so that the total number of balls in each urn is $(a_1 + a_2 + a_3)$ to start with. Now, a ball is drawn at random from urn 1 and let X denote the number written on it. Consequently, b balls of kind a_X are added to urn 2. Now a ball is drawn at random from urn 2 and let Y denote the number written on it.

- a) Find the marginal distribution of Y .
- b) Find the correlation between X and Y .

 $[6+9]=15$

2. Let p_1 and p_2 be the success probabilities of two treatments A and B. Suppose (p_1, p_2) has a two-point prior given by

$$
(p_1, p_2) = \begin{cases} (a, 1-a) & \text{with probability } \frac{1}{2}, \\ (1-a, a) & \text{with probability } \frac{1}{2}, \end{cases}
$$

for some $a \in (0,1), a \neq \frac{1}{2}$ $\frac{1}{2}$. Now, let s_1 and s_2 successes occur from n_1 and n_2 samples from treatment A and B , respectively. Find the posterior probability of the event $\{p_1 > p_2\}.$

$$
[15]
$$

3. (a) Let X_1, X_2, \ldots be independent and identically distributed random variables having distribution function

$$
F(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{x}{a} \right), \quad a > 0.
$$

Is the strong law of large numbers (SLLN) applicable for $\{X_n\}$? Justify!

(b) Suppose that $\{X_n\}$, $\{Y_n\}$ are two sequences of random variables satisfying

$$
\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty, \quad \text{and} \quad \sum_{n=1}^{\infty} |Y_n| < \infty, \quad \text{almost surely.}
$$

Prove that $X_n \to 0$ almost surely.

 $[6+9]=15$

4. Suppose that X_1, \ldots, X_n are independent and identically distributed as $\mathcal{N}(\theta, 1)$ and the parameter of interest is $p = P(X_1 \le a)$ for fixed known a.

- a) Show that the UMVUE of p is $\delta_n = \Phi\left(\sqrt{\frac{n}{n-1}}(a-\overline{X})\right)$.
- b) Using the delta method, or otherwise, find the asymptotic distribution of the UMVUE δ_n . $[8+7]=15$

5. Let \underline{Y} and S be, respectively, the mean vector and the covariance matrix based on a random sample of size n from $\mathcal{N}_p(\mu, \Sigma)$ distribution with unknown $\underline{\mu}$ and Σ , where $p < n$. We want to test the hypothesis

$$
H_0: \mu = 0, \quad \text{against} \quad H_1: \mu \neq 0.
$$

For this purpose, we consider the following three test statistics.

$$
T_1 = \text{usual Hotelling's } T^2 \text{ test statistic},
$$

\n
$$
T_2 = \sup_{\underline{l} \neq 0} \frac{(\underline{l}^T \underline{Y})^2}{(\underline{l}^T \underline{S} \underline{l})},
$$

\n
$$
T_3 = \frac{|S + \underline{Y} \underline{Y}^T|}{|S|}.
$$

Prove that the test based on T_1 , T_2 and T_3 are all equivalent for testing the above hypothesis.

$$
^{[15]}
$$

6. Suppose that X_1, X_2, \ldots are independent and identically distributed random variables according to an unknown continuous distribution function F having unique median. We want to test the hypothesis

$$
H_0: F(0) = \frac{1}{2}
$$
, against $H_1: F(0) \neq \frac{1}{2}$.

a) Suggest an appropriate test for the above hypothesis using the stopping variable

$$
N = \min \left\{ n : \sum_{i=1}^{n} I(X_i > 0) = r \right\},\
$$

where $r(> 1)$ is a positive integer.

- b) Find the mean and variance of N under H_1 .
- c) Find the asymptotic distribution of N under H_1 and hence comment on its asymptotic power.

 $[5+4+6]=15$

7. Consider a randomized block design with b treatments, arranged in b blocks, each of size $b - 1$, such that every treatment except the *i*-th treatment occurs exactly once in the *i*-th block, $i = 1, \ldots, b$. Let τ_i denote the effect of *i*-th treatment for each i.

- a) Show that every pairwise contrast of the treatment effects is estimable.
- b) Find the Best Linear Unbiased Estimator (BLUE) of $\tau_i \tau_j$, for $i \neq$ j, $i, j \in \{1, \ldots, b\}$. Also find its variance.

 $[6+9]=15$

8. Let F be a cumulative distribution function (CDF) on the real line with density f. Consider a two sample problem where X_1, \ldots, X_n are independent and identically distributed with CDF F and Y_1, \ldots, Y_m are independent and identically distributed with CDF F^{γ} for some $\gamma > 0$.

- a) Show that F^{γ} is indeed a CDF.
- b) Assuming F to be known, derive the most powerful test for H_0 : $\gamma = 1$ against H_1 : $\gamma = 1/2$.
- c) If F is unknown, propose a suitable nonparametric test for the same hypothesis testing problem as in (b) and derive its null distribution.

 $[3+5+7]=15$

